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Abstract Source–sink dynamics may be ubiquitous in
ecology. We developed a theory for source–sink dynamics
using spatial extensions of the net reproductive value, R0,
which has been used elsewhere to define fitness, disease
eradication, population growth, and invasion risk. R0

decomposes into biologically meaningful components—
lifetime reproductive output, survival, and dispersal—that
are widely adaptable and easily interpreted. The theory
provides a general quantitative means for relating funda-
mental niche, biotic interactions, dispersal, and species
distributions. We applied the methods toDreissena and found
a resolution to a paradox in invasion biology—competitive
coexistence between quagga (Dreissena bugensis) and zebra
(D. polymorpha) mussels among lakes despite extensive
niche overlap within lakes. Source–sink dynamics within
lakes between deepwater and shallow habitats, which favor
quagga and zebra mussels, respectively, yield a metacom-
munity distribution where quagga mussels dominate large
lakes and zebra mussels dominate small lakes. The source–
sink framework may also be useful in spatial competition
theory, habitat conservation, marine protected areas, and
ecological responses to climate change.

Keywords Competition . Dispersal . Survival .

Source–sink dynamics . Niche theory .Dreissena

Introduction

Source–sink dynamics are central to ecology for their
influence on population dynamics (Brown and Kodric-
Brown 1977; Pulliam 1988), species ranges (MacArthur
1972; Holt 2003), and competitive coexistence (Amarasekare
and Nisbet 2001; Snyder and Chesson 2004). Dispersal may
be as important as competition in explaining differences
between fundamental and realized niche (Hutchinson 1957;
Pulliam 2000) because source–sink dynamics can maintain
populations in poor habitat (Pulliam 1988) and extinguish
them in suitable habitat (Amarasekare and Nisbet 2001).
Understanding source–sink dynamics is also of applied
importance for conserving species on fragmented landscapes
(Hanski and Gyllenberg 1993; Hanski 1998) and designing
marine protected areas (Lubchenco et al. 2003; Neubert
2003). Despite the fundamental and applied importance of
source–sink dynamics, there is some confusion surrounding
what actually constitutes a source or a sink and how to
quantitatively distinguish between the two. The central
confusion for population dynamics is whether sources should
reflect the fundamental niche (Pulliam 2000) or the
contribution a local population makes to the metapopulation
(Figueira and Crowder 2006; Runge et al. 2006).

In this paper, we introduce a new theory for source–sink
dynamics and apply it to a long-standing problem in
invasion biology—competition between Dreissena mussels.
The theory is based on the net reproductive value, R0,
which measures the number of progeny produced in the
lifetime of a single individual (Heesterbeek 2002). We
begin by briefly reviewing the theory of source–sink
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dynamics, with a focus on their relation to niche, dispersal,
and distribution. We then develop the new theory for both
single species and competing species cases, using a mutual
invasibility analysis to assess scenarios of species persistence,
exclusion, and coexistence. Our review and theoretical
development brings together and quantifies concepts from
competition theory, spatial ecology, and mathematical biology
whose interrelatedness had not been fully appreciated. We
follow by examining the Dreissenid paradox, which is the
competitive coexistence of quagga (Dreissena bugensis) and
zebra (D. polymorpha) mussels among lakes despite exten-
sive niche overlap. Application of the theory to a spatial
model of zebra and quagga mussel competition reveals
source–sink dynamics between shallow and deepwater
habitats that leads to within-lake exclusion and among-lake
coexistence.

Theory of source–sink dynamics

Pulliam (1988) considered a population distributed over a
fragmented landscape and suggested that population flow
from source habitats can maintain populations in sink
habitats—echoing the rescue effect proposed a decade
earlier (Brown and Kodric-Brown 1977). Pulliam (1988)
proposed two definitions for sources and sinks based on
equilibrium and invasion (low density) conditions. The first
definition considers a population at equilibrium (all
subpopulation densities are constant through time) and
defines a source as a net exporter and a sink as a net
importer of individuals. The second definition considers a
population at low density and defines a source as habitat
patches in which a population can grow in the absence of
immigration and emigration. The equilibrium definition has
been used in the evolutionary theory of source–sink dynamics
(Kawecki 1995) and the invasion definition has been used in
population dynamics (Pulliam 1988), where it has recently
been modified and redefined (Figueira and Crowder 2006;
Runge et al. 2006). Our focus is on the invasion definition
used in population dynamics, which allows us to be
consistent with previous works and also allows us to use
linear approximations that simplify the analysis.

In his original article, Pulliam (1988) used the local
population growth rate (at low population size and no
density dependence) of an annually breeding species,

l ¼ PA þ PJb ð1Þ

to classify source and sink habitat patches. The parameter
PA is adult survival, PJ is juvenile survival, and β is the
number of juveniles produced per adult. All of PA, PJ, and
β are habitat specific and so each habitat can have a
different value of λ. Source patches were those with λ>1
and sinks were those with λ<1. Equation (1) is based on an

annual breeding cycle but the local population growth rate
is more generally expressed as the dominant eigenvalue of
the linearized local population projection matrix for
discrete-time stage or age-structured populations (Caswell
2001). Analogous classifications have been used in dis-
cussions of source–sink dynamics on patches (Fox 2007),
and discretized (Pulliam 2000) and continuous (Snyder and
Chesson 2004) landscapes.

Hutchinson (1957) introduced the idea of a species
fundamental niche as a hypervolume defining the set of
environmental conditions (e.g., moisture, salinity, pH,
irradiance, etc.) that can support the species within a space
defined by environmental (not spatial) axes. According to
source–sink theory based on local population growth rates,
source habitat is therefore the projection of a fundamental
niche onto geographical space. However, this can be
misleading from the population perspective (Figueira and
Crowder 2006; Runge et al. 2006). For example, Runge et
al. (2006) described how a habitat could be classified as a
source according to λ and yet contribute no individuals to
the population because of 100% mortality during emigra-
tion. Thus, a theory of source–sink dynamics needs to
depart some from the niche concept and incorporate
dispersal.

At least two studies have attempted to incorporate
dispersal into the classification of source and sink habitat
patches (Figueira and Crowder 2006; Runge et al. 2006).
Runge et al. (2006) first proposed this and introduced a new
criterion, Cr, for distinguishing source and sink habitats. Cr

represents the contribution of a focal population to the
metapopulation by defining

Cr ¼ frrA þ
X
s6¼r

frsA þ br frrJ þ
X
s 6¼r

frsJ

 !
ð2Þ

where frsA and frsJ are the probabilities that an adult and
juvenile, respectively, from patch r survive to be in patch s
in the following year (Runge et al. 2006). Equation (2) is
based on the same annual breeding cycle as Eq. (1) but now
includes emigration of adults and juveniles from a focal
patch to the metapopulation. That is, in one time step, an
adult individual in patch r will contribute Cr individuals to
the metapopulation. Figueira and Crowder (2006) made
nearly the same development, defining a “contribution
growth rate”, λc, and applied it to mayflies and reef fish.
Runge et al. (2006) went a step further by generalizing Cr to
stage- or age-structured populations although the calcula-
tions can be complex and the expressions may not be
biologically intuitive (see appendix A in Runge et al. 2006).

Source–sink dynamics also arise in spatial competition
models, most often as a mechanism underlying competitive
coexistence (Amarasekare 2003; Snyder and Chesson
2004). They also appear as a process that can alter
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outcomes of competition such as species extirpation from
what is otherwise suitable habitat (Amarasekare and Nisbet
2001; Schreiber and Kelton 2005). Many of these papers
(e.g., Snyder and Chesson 2004; Schreiber and Kelton
2005) use the traditional definition of source or sink based
on local growth rates similar to Pulliam (1988), and so
suffer from the same limitations identified by Runge et al
(2006) in that they may not reflect the contribution a local
population makes to the metapopulation. There is large
variation in the structure of competition models in which
source–sink dynamics arise, ranging from continuous time
models on patches (Amarasekare and Nisbet 2001) to
discrete time models on continuous landscapes (Snyder and
Chesson 2004). As such, there is no general mathematical
framework for source–sink dynamics to study how distri-
butions of sources and sinks are affected by competition
and dispersal as well as how source–sink dynamics mediate
the relations among niche, competition, and distribution.

A classification of source and sink habitats should
accommodate dispersal to reflect the flow of individuals
from a focal subpopulation to the larger population
(Figueira and Crowder 2006; Runge et al. 2006). Such a
theory should also be general in its application by
extending beyond classical metapopulation formulations
for single species with annual lifecycles. It should accom-
modate age- or stage-structured lifecycles as well as
fragmented and continuous landscapes within a framework
that is biologically intuitive. Further, it should also address
classical problems such as relating niche and distribution as
well as explaining competitive coexistence. We propose
that such a theory exists when source–sink dynamics are
viewed through the lens of the net reproductive value, R0.
R0 theory offers the advantage of integrating demographic
processes over an entire lifecycle, and because of its long
history in demography and epidemiology (Heesterbeek 2002),
it offers a well-developed quantitative toolkit for treating
structured populations. We begin by briefly reviewing R0

and then describe its application to source–sink dynamics in
single species models, competitive coexistence, and the
relationship between niche and distribution.

An R0 theory for source–sink dynamics

A new perspective on source–sink dynamics comes via
the net reproductive value, R0, defined as the number of
adult progeny produced in the lifetime of a single adult
(Heesterbeek 2002). R0 is prevalent in epidemiology,
where it differentiates disease persistence and eradication
(Diekmann et al. 1990; Anderson and May 1991; Diekmann
and Heesterbeek 2000). It also appears in life history theory
(Metz et al. 1992; Mylius and Diekmann 1995), age- or
stage-structured population dynamics (Caswell 2001), and
invasion biology (de Camino-Beck and Lewis 2007). In all

cases, if R0>1 a small population will establish/persist but if
R0<1 then individuals cannot on average replace themselves
and the population declines to extinction (Cushing and Zhou
1994; Li and Schneider 2002). Note that R0 theory is
different and more general than R* theory, which predicts
competitive exclusion based on minimal resource require-
ments (Tilman 1982), but which breaks down under
dispersal (Abrams and Wilson 2004) and is limited to
models of resource competition.

We use three spatial extensions of R0 as the basis of
source–sink theory. The first extension is a fundamental
niche R0, denoted bR0 xð Þ, that determines the spatial
distribution of a species fundamental niche (x denotes
space). The second is a source–sink R0, denoted R0(x), that
maps source and sink regions by accommodating dispersal.
The third is a global R0, denoted R0, that determines global
species persistence and/or coexistence. Our theoretical
development falls broadly within the existing mathematical
framework for calculating R0 for structured epidemics
(Diekmann et al. 1990). We begin by considering models
with single dispersal events in the lifecycle—i.e., popula-
tions with dispersing young and sessile adults (appropriate
for many plants, algae, invertebrates, and some vertebrates)
for which an R0 theory for source–sink dynamics is most
helpful. We provide the criteria for defining source and sink
habitats in both patchy and continuous landscapes and
illustrate how source–sink dynamics relate niche and
distribution using generalized quantities—reproduction
and survival—that can be extracted from a variety of
population models.

R0 for single species models

For populations with dispersing young and sessile adults,
there are two spatially separated demographic processes—
lifetime reproductive output of progeny by an average
reproducing adult (denoted by Λ(x)) and the probability
progeny survive to become reproducing adults (survival,
denoted by Ψ(x)). The first spatial extension of the net
reproductive value, the niche R0 denoted by bR0 xð Þ, defines
fundamental niche space and so, by definition, it strictly
excludes dispersal and competition. It is simply

R 0(x) = Λ(x)
reproduction
at location x

Ψ(x)
survival

at location x

,{ { ð3Þ

which accounts for spatial variation in the abiotic environ-
ment. Suitable habitat consists of areas where the environ-
ment allows persistence

�bR0 xð Þ > 1
�
. Locations where the

population cannot establish
�bR0 xð Þ < 1

�
correspond to

unsuitable habitat and are outside the fundamental niche.
To see the effects of dispersal on source–sink dynamics,

we introduce a dispersal kernel, k(x, z), which defines the
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probability density that a propagule released from location
x will settle at location z. The net reproductive value of an
average individual at location x must account for the
dispersal from x to z and subsequent survival of offspring
to adulthood at z throughout a spatially continuous landscape

R0(x) = Λ(x)
reproduction
at location x

Ψ(z)k(x,z)dz

survival
after dispersal from x

.{ ð4Þ

For the case where habitat is fragmented among discrete
patches, we have

R0(x) = Λ(x)
reproduction
at location x

Ψ(z)k (x,z)

survival
after dispersal from x

{ ð5Þ

where k′(x, z) is the probability of moving from patch x to
patch z. For organisms with no mortality during dispersal,
the dispersal kernel gives unity when summed over all
possible settling locations z. If, in addition, the species
becomes immediately reproductive, the survival term Ψ(z)
equals unity and so the sum in Eq. (5) also equals unity and
the source or sink nature of patch x is determined solely by
local dynamics. Locations where R0(x)>1 function as
sources because individuals at location x on average
produce more than one adult offspring somewhere in the
spatial domain. Locations where R0(x)<1 function as sinks
because on average the lifetime reproductive output of an
individual at location x results, on average, in less than one
adult offspring.

Equations (4−5) map how source and sink distributions
change with dispersal and abiotic factors. However, they do
not inform on the global persistence or extinction of the
focal species. To do this we need the concept of a next
generation operator, Γ, which describes the expected
density of population arising from a single individual
whose precise location in space may be unknown, but is
distributed by �0. Any small population distributed by �0

will be distributed in the next generation according to

Γφ0(x) = Ψ(x)
survival

at location x

Λ(z)φ0(z)k(z, x)dz

density of propagules
arriving at x

.{ ð6Þ

For the case where habitat is fragmented among discrete
patches, we have

Γφ0(x) = Ψ(x)
survival

at location x

Λ(z)φ0(z)k (z, x)

density of propagules
arriving at x

.{ ð7Þ

where x and z denote patch identities. That is, the next
generation produced by a single individual distributed by
φ0(z) is determined by reproduction at all locations z,

weighted by the proportion of the individual located there,
φ0(z), times the probability of dispersing from z to x, k(z, x),
times the probability of being recruited at location x, and
then summed over all possible starting locations z.
Equations (6–7) lead to a calculation of the global net
reproductive value, R0, that determines persistence. Note
that Eqs. (6)–(7) are linear so the population will either
persist or go extinct. This linear model can be posed as an
eigenvalue–eigenvector problem to reveal R0:

ΓfðxÞ ¼ R0fðxÞ ð8Þ

The global net reproductive value is the dominant
eigenvalue of the next generation operator, Γ, and the
corresponding eigenvector is �(x) (Diekmann et al. 1990).
That is, after introduction, the population will grow at an
intergenerational rate R0 and the spatial distribution of the
invading population will stabilize at φ(x), providing
reasonable assumptions on Λ, Ψ, and k are met. The
solutions for R0 and φ(x) can be found numerically via the
power method (Press et al. 2002), which involves iterating
and rescaling Eqs. (6)–(7) until the spatial distribution is
stabilized. The distribution of the initial individual, φ0(z), is
arbitrary. The eigenfunction is the stabilized spatial distri-
bution of individuals and the global net reproductive value
(dominant eigenvalue) is the associated change in magni-
tude of population density between iterations. For this
power method to work, the operator (6)–(7) must be
superpositive, that is it must have a simple positive
dominant eigenvalue with a positive eigenfunction, and no
other eigenfunction is positive (Krasnosel’skii and Zabreiko
1984). This superpositivity is satisfied, for example, if Λ,
Ψ, and k are positive. The condition that k is positive
everywhere can be relaxed, providing individuals can
disperse from each location to every other location in a
finite number of steps (see Lutscher and Lewis 2004 for
details). These conditions are usually met in ecological
models featuring dispersal kernels, including the model of
Dreissena competition that we analyze later in this paper.

In Appendix 1, we show how Eq. (8) can be used to
recover mathematically and biologically pleasing solutions
in two special cases: no dispersal and globally uniform
dispersal.

Examples of single species models

The results from the preceding theory can be applied to
previous models of spatial population dynamics. The
application is particularly straightforward when the adults
are sessile, and there is a single dispersal event associated
with the settlement of new juveniles. We will focus on this
case, deferring discussion of more complex life history–
dispersal patterns to the ‘Discussion’.
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A single species with discrete non-overlapping gener-
ations and annual reproduction and dispersal events can be
modeled with an integrodifference equation

n x; t þ 1ð Þ ¼
Z

f n z; tð Þ; zð Þn z; tð Þk x; zð Þdz ð9Þ

where n(x, t) is the abundance of individuals at location x
and time t, and f is a density-dependent reproduction
function such as Ricker or Beverton–Holt population
growth with nonnegative geometric growth rate f(0, x). At
low population densities, dynamics from one generation to
the next are approximated by the linear equation

n x; t þ 1ð Þ ¼
Z

f 0; zð Þn z; tð Þk z; xð Þdz ¼ Γn x; tð Þ ð10Þ

For this model, the reproduction and survival terms for
the R0 theory are Λ(x)= f(0, x) and Ψ(x)=1, and, with these,
the next generation operator takes the form given in Eq. (6).
If there is some density-dependent mortality of individuals
following dispersal, with fraction s(n, x) surviving, then Eq.
(10) can be extended to

n x; t þ 1ð Þ ¼ s n x; tð Þ; xð Þ
Z

f n z; tð Þ; zð Þn z; tð Þk z; xð Þdz;
ð11Þ

or

nðx; t þ 1Þ ¼
Z

f nðz; tÞ; zð Þsðnðz; tÞ; zÞnðz; tÞkðz; xÞdz
ð12Þ

depending whether mortality is before or after census. Both
yield Λ(x)= f(0, x) and Ψ(x)=s(0, x).

How can this model be extended further to include
overlapping generations? The simplest case, applicable to some
plant and insect populations, involves dispersal of juveniles
prior to a sedentary adult stage. This extends Eq. (9) to

n x; t þ 1ð Þ ¼ s n; x; tð Þ; zð Þn x; tð Þ

þ
Z

f n z; tð Þ; zð Þs n z; tð Þ; zð Þn z; tð Þk z; xð Þdz
ð13Þ

where the survival term s is applied prior to reproduction. At
low densities, dynamics from one year to the next are
approximated by the linear equation

n x; t þ 1ð Þ ¼ s 0; zð Þn x; tð Þ

þ
Z

f 0; zð Þs 0; zð Þn z; tð Þk z; xð Þdz: ð14Þ

Here, the lifespan of a reproducing adult is geometrically
distributed with expectation 1� s 0; xð Þð Þ�1 (see Appendix 3).

Thus, Λ is the expected lifespan of an individual at location x
in the absence of density-dependent mortality times its annual
reproductive output ΛðxÞ ¼ 1� s 0; xð Þð Þ�1f 0; xð Þ and Ψ is
the probability of newly produced juveniles surviving to
adulthood Ψ(x)=s(0, x). In this case, the next generation
operator (6) takes the form

Γn x; tð Þ ¼ s 0; xð Þ
Z

1� s 0; zð Þð Þ�1f 0; zð Þn z; tð Þk z; xð Þdz
ð15Þ

An extension of this model will be considered for the
Driessenid competition dynamics in later sections of the
paper.

A metapopulation example where R0 theory may be
preferable to Cr is when the population is structured by
stages and the number of patches is relatively large.
Consider a lifecycle consisting of dispersing young, sessile
juveniles, and sessile adults. The corresponding model is

ny x; t þ 1ð Þ ¼P
z
f ðzÞsaðzÞna z; tð Þk' z; xð Þ

nj x; t þ 1ð Þ ¼ syðxÞny x; tð Þ;
na x; t þ 1ð Þ ¼ sjðxÞnj x; tð Þ þ saðxÞna x; tð Þ

ð16Þ

where ny, nj, and na are the three population stages—young,
juveniles, and adults. The annual survival of each stage is
sy, sj, and sa, respectively. Only adults reproduce, producing
f(x) young each year. To apply Cr theory, one must
construct a transition matrix that connects the network of
nodes representing every combination of population stage
and patch location (Runge et al. 2006). The large number of
possible combinations (in this case, three stages times the
number of patches, squared) means the transition matrix
can quickly become very large, encumbering calculations
for the contribution metric or the metapopulation growth
rate. Also, the homogenization of space and population
stage into one transition matrix loses some biological
appeal because the intuitive structuring of space and
population stage is lost. However, application of R0 theory
is straightforward. The quantities of interest are lifetime
reproductive output of young per adult ΛðxÞ ¼ f ðxÞ�
1� saðxÞ½ ��1 and survival, the probability a young will
survive to reach the adult stage, Ψ(x)=sy(x)sj(x)sa(x). If the
network of patches was replaced with a continuous
landscape of varying habitat quality, Cr theory would not
apply whereas R0 theory remains straightforward.

R0 for spatial competition models

Source–sink dynamics are one mechanism that can facili-
tate competitive coexistence (Amarasekare 2003). The R0

framework can be extended to analyze spatial competition
models and provide insights into the relations among niche,
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competition, dispersal, and distribution. To do so, we turn
to a mutual invasibility analysis and consider multiple
competing species each of which has its own non-zero
equilibrium distribution in the absence of interspecific
competition. The mutual invasibility analysis considers the
net reproductive value of a focal species introduced at low
abundance into a community of resident species at their
equilibrium densities. In this situation, the focal species
experiences competition with resident species, which may
affect reproduction and/or survival. The invader is consid-
ered sufficiently rare to escape intra-specific competition.
Below, we summarize how the principles of R0 theory for
source–sink dynamics can be applied to spatial competition
models. We follow with a detailed application of the theory
to Dreissena competition, which involves stage-structured
integrodifference models.

The principles for the competing species case follow
similarly from the single species case. We modify the
notation replacing Λ and Ψ with Λi and Ψi to denote the
effects of competition with resident species r on reproduc-
tion and survival of the focal invading species i. Interspe-
cific competition acts to reduce the values of Λi and Ψi

relative to the single species case, but the exact effect is
dependent on the nature of competition. Because the
resident is at steady state, the values of Λi and Ψi are
temporally constant but may be spatially variable. The
effects of competition on distributions relative to funda-
mental niche can be seen by mathematically or graphically
comparing bR0ðxÞ and bRi

0
ðxÞ. The effect of competition on

source–sink dynamics can be viewed by comparing R0(x)
and Ri

0ðxÞ. The global net reproductive value defines if the
focal invading species will grow ðif Ri

0 > 1Þ or decline
if R

i
0 < 1. Coexistence occurs when R

i
0 > 1 for both

species.
The behavior when one or both R

i
0 < 1 depends upon

the nature of the non-linear dynamics and requires more
detailed analysis. General conditions for existence of a
globally stable equilibrium value are that the dynamics are
monotone (typical of two-species competitive systems), that
the basin of attraction for the steady state for extinction of
both species is trivial, that, in the absence of the other
species, each species has a globally stable resident steady
state (thus excluding possible Allee effects), and that at
most one coexistence equilibrium exists (Smith and Theime
2001). Under these conditions, we expect competitive
exclusion to occur if one species has R

i
0 > 1 and the other

has R
i
0 < 1, and if both species have R

i
0 < 1 then the

dominant species is one that first becomes established
(bistability). The more exotic case of semi-stability of the
coexistence equilibrium is theoretically possible, but degen-
erate from a mathematical perspective, and thus unlikely to
occur for biologically realistic models (see Discussion of
Smith and Theime 2001). As described above, this

relationship between R0 and competitive outcomes implic-
itly relies upon the absence of Allee effects. If an Allee
effect is present, there is the possibility of establishment
when R

i
0 < 1 but introduction must occur at sufficiently

high levels to overcome depensation (Boldin 2006).

Summary of R0 theory for source–sink dynamics

To summarize, we have shown how to map the boundaries
of a fundamental niche by solving Eq. (3)—when there is
no dispersal or competition—for bR0ðxÞ ¼ 1. Areas wherebR0 xð Þ > 1 are within the fundamental niche and correspond
to positive equilibrium densities. Areas where bR0ðxÞ < 1
are outside the fundamental niche and cannot support a
population. When dispersal is included, a fundamental
niche may be exceeded through the rescue effect (immi-
gration prevents local population extinction) (Brown and
Kodric-Brown 1977). This occurs when the global net
reproductive value is greater than unity, R0 > 1, because
population growth occurs everywhere inside or outside the
fundamental niche. The population growth can be sustained
at sink locations (R0(x)<1) through immigration of prop-
agules from source locations (R0(x)>1). Alternatively, the
fundamental niche may not be filled because of strong
dispersal coupling to extensive sink habitat. This occurs
when the global net reproductive value is less than unity,
R0 < 1; global population growth is negative everywhere,
inside and outside the fundamental niche, and the popula-
tion will eventually reach extinction. Regardless of whether
the outcome is population persistence or extinction, one can
map the spatial distributions of source and sink habitats as
they function in response to the environment, competition,
and dispersal. This is done by solving Eqs. (4)–(5) for R0(x)=
1. Regions where R0(x)>1 function as sources and regions
where R0(x)<1 function as sinks. These regions characterize
the source–sink dynamics underlying population persistence
or extinction, but do not, in and of themselves, inform on
whether the population will, as a whole, persist. Global
persistence is only determined by the global net reproductive
value, R0. The effects of competition on niche space, source–
sink dynamics, and global persistence can be seen by direct
comparisons between bR0ðxÞ and bRi

0
ðxÞ, R0(x) and R0ðxÞ and

R
i
0 ðxÞ. The actual example, illustrating how this can be done

in practice, is given in the next sections that model
competition between zebra and quagga mussels in lakes.

Dreissenid competition

Quagga and zebra mussels have invaded temperate lakes of
eastern North America over the last 20 years. Both are
benthic suspension feeders with diocy, broadcast spawning,
and long-lived dispersing larvae (Mackie and Schloesser
1996; Mills et al. 1996). Although similar in life history and
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ecology, they differ markedly in their patterns of spread.
After being introduced to the Great Lakes in the late 1980s
(Hebert et al. 1989; Griffiths et al. 1991; May and Marsden
1992; Mills et al. 1993), zebra mussels quickly spread
through temperate eastern North America whereas quagga
mussels displaced zebra mussels from a few large lakes
(Erie, Ontario, Michigan, and Simcoe) and there they
remain (H. J. MacIsaac, Biological Sciences, University of
Windsor, personal communication; Mills et al. 1999;
Stoeckmann 2003; Wilson et al. 2006). Widespread
transport of Dreissena can occur by boater traffic (Johnson
and Carlton 1996) and has probably occurred for several
years (Wilson et al. 1999). Quagga mussels may be superior
competitors based on energetics (Stoeckmann 2003), but
there is no satisfying explanation for their absence from
surrounding smaller lakes. One clue is the apparent
difference in depth adaptation: reproduction and body
growth at cold temperatures favor quagga mussels (Roe
and MacIsaac 1997; Claxton and Mackie 1998; Thorp et al.
1998); survival at high temperatures favor zebra mussels
(Spidle et al. 1995; Thorp et al. 1998); and quagga mussels
first colonized deepwater habitats before moving to shore
(Mills et al. 1993; H.J. MacIsaac, personal communication).
We show that source–sink dynamics between deepwater
and shallow habitats, which favor quagga and zebra
mussels, respectively, resolve the differences in historical
spread and contemporary distributions.

A Dreissenid model

Quagga and zebra mussels, like many other aquatic
invertebrates, algae, and terrestrial plants, have a sessile
adult (A) stage that reproduces annually and a juvenile (Y)
stage that disperses before settling. The lifecycle, for any
species j with this lifecycle can be expressed by the graph

where s1,j and s2,j are the basal survival rates for juveniles
and adults, respectively, fj is the number of juveniles
produced per adult, and ϕ is a function accounting for
density-dependent mortality of juveniles and adults. For
mussels, we assume that individuals are distributed along
an environmental gradient, x, that, in this case, corresponds
to a lake cross-section stretching along benthic habitats
from the shoreline at x=0 to the center of the lake at x=L.

Dispersal links locations x and z according to a dispersal
kernel k(x, z), which results in a stage-structured integro-
difference equation model

Aj x; t þ 1ð Þ ¼ ϕ x; tð Þ s1;jðxÞYj x; tð Þ þ s2;jðxÞAj x; tð Þ� �
Yj x; t þ 1ð Þ ¼ R L0 ϕ z; tð Þs2;jðzÞfjðzÞAj z; tð Þk z; xð Þdz

ð17Þ
where k(x, z) defines the probability of moving from
location z to location x. Note that survival and fecundity
are dependent on the local environment and that integration
occurs over the entire domain of x.

Equation (17) indicates that competition is dependent on
time and space, and this is based on the effects of
environment and local population densities. We assume
individuals compete for a limiting resource that is local
relative to the scale of dispersal and so do not include a
competition kernel that weights the strength of competition
among individuals according to their separation distances.
This is relevant, for example, to competition for nutrients or
light in plants, algae, or aquatic filter feeders. We assume
that competitive ability is proportional to some trait such as
body size and that competition does not induce overcom-
pensation and so choose a modified Beverton–Holt density-
dependent survival term

ϕ x; tð Þ ¼ 1

1þ b
P
j

‘j;yðxÞYj x; tð Þ þ ‘j;aðxÞAj x; tð Þ� � ð18Þ

(Caswell 2001; Kot 2001). Here, β is the competition
coefficient that relates competitive ability to a phenotypic
trait, ℓj,y(x) and ℓj,a(x), which we take to be shell lengths of
juveniles and adults, respectively. We assume that β is the
same for each species and life-history stage and that
variation in competitive ability among species and stages
is accounted for in ℓj,y(x) and ℓj,a(x).

We compiled statistical models of mussel growth,
survival, and reproduction from the literature and linked
these to position along benthic habitat via a mean summer
temperature profile, T=30e−0.05x. Details of the parameter-
ization are given in Appendix 2 and the spatial dependency
of model parameters are shown in Fig. 1. Results are
qualitatively the same for most temperature functions we
considered, including those with thermal stratification.
Dispersal is determined by the diffusion–decay equation

du

dt
¼ D

d2u

dx2
� au ð19Þ

where u is the density of larvae, D is the diffusion
coefficient governing dispersion of larvae and α is the
mortality rate of larvae. We assume that at the shoreline
larvae are reflected back into the lake and at x=L, larvae
leaving the domain are replaced by larvae entering the
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domain from the opposite side of the lake. This leads to
reflecting boundary conditions and dispersal kernel with a
Fourier series representation (van Kirk and Lewis 1999).

Single species dynamics

We begin by deriving expressions for R0 and its reproduc-
tion and survival components for the single species case by
ignoring competition (by setting ϕ=1). We follow by
examining the consequences of dispersal for source–sink
dynamics using Eq. (4) and species persistence using Eqs.
(6) and (8). The single species model without dispersal or
competition is a linear matrix population model

Nj x; t þ 1ð Þ ¼ BjðxÞNjðtÞ ð20Þ
where

BjðxÞ ¼ 0 s2;jðxÞfjðxÞ
s1;jðxÞ s2;jðxÞ

� �
ð21Þ

and Nj is a vector containing the abundances of adults and
juveniles. To calculate the net reproductive value, we divide
Bj into transition and fecundity components, Bj=T+F,
where

TjðxÞ ¼ 0 0
s1;jðxÞ s2;jðxÞ

� �
ð22Þ

and

FjðxÞ ¼ 0 s2;jðxÞfiðxÞ
0 0

� �
ð23Þ

Any founding population will produce F offspring in the
following year. T of the founding population will survive to
the next year and produce F offspring. After 2 years, T2 of
the founding population will produce F offspring, and so
on. The lifetime reproductive output of any founding
individual will be (F+TF+T2F+T3F+…)=[ΣkT

k]F=F(I−
T)−1 (Appendix 3). This expression is another example of a
next generation operator and the net reproductive value, R0,
is its dominant eigenvalue (Cushing and Zhou 1994; Caswell
2001). For our model, the net reproductive value of a small
introduced population when dispersal is ignored is

bR0 ¼ r F I� Tð Þ�1
h i

¼ s1;js2;j fj 1� s2;j
� ��1

h i
¼ <Λ ð24Þ

which is grouped into two terms that have clear biological
interpretation. The term on the right, Λ=fj(1−s2,j)−1, is the
total number of juveniles produced in the lifespan of an
adult. This arises through the multiplication of an adult’s
annual fecundity, fj, with its expected lifespan, [1−s2,j]−1

(which is the sum of the series 1+s2,j+s2,j
2+s2,j

3+…). The
other term, Ψ=s1,js2,j, is the probability a juvenile is recruited
into the adult population. A juvenile survives its first year
with probability s1,j and then is recruited into the reproduc-
tive adult population with probability s2,j. The symbol ρ
denotes the calculation of the dominant eigenvalue of the
bracketed expression.

With the reproduction (Λ) and survival (Ψ) components
of R0 defined above for Dreissena, we used Eqs. (3), (4),
and (8) to map fundamental niche space, source and sink
regions, and calculate global persistence criteria. Figure 2
shows how dispersal interacts with reproduction and
survival terms to affect source–sink dynamics and global
persistence criteria. When zebra and quagga mussels exist
in isolation, dispersal can affect the spatial distribution of
source and sink regions as well as global persistence
criteria. There are sink regions near shorelines, source
regions in shallow to intermediate depth, and sink regions
in deep habitats for both species. As dispersal increases,
nearshore habitats switch from sink to source function
because the shoreline is a reflecting boundary near source
habitat so a large proportion of progeny produced near the

Fig. 1 Spatial dependency of temperature and quagga (solid lines)
and zebra (dashed lines) mussel survivorship, shell length, and relative
fecundity. Appendix 2 details the statistical submodels underlying
these spatially dependent model parameters
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shoreline get recruited into favorable habitat at shallow to
intermediate depth. The opposite effect occurs near the
deepwater boundary between source and sink regions.
There, as dispersal increases and connects source and sink
habitats the deepwater edge of source habitats decline in
their function as sources and the sink regions moves
slightly into shallower depths. At a lake-wide scale, the
global net reproductive value declines as dispersal increases
(but remains greater than unity) because of increased losses
to extensive sink regions in deepwater habitats. Examina-
tion of the stable population distribution, �(x), and the
equilibrium distributions reveal that, at low dispersal, the
invading population remains concentrated in the most
favorable habitats but then spreads out as dispersal
increases (Fig. 2).

Competing species dynamics

Consider two competing species described by Eq. (17)
where the species differ in their environmental response. Of
interest here are the interactions among competitive
interactions, differential environmental response, and dis-
persal in determining source–sink dynamics and species
coexistence. We use a mutual invasibility analysis to
evaluate the conditions under which coexistence and/or
exclusion results from competition. The logic is that
competing species can coexist if each species, when rare,
can invade the resident community. The analysis entails
first calculating the equilibrium densities of a resident
species with no interspecific competition and, second,
calculating the net reproductive value of the invader as it

Fig. 2 Effects of dispersal on
source–sink dynamics, spatial
distributions, and persistence
criteria of single species
dynamics of quagga and zebra
mussels. Top panels show
spatial distributions of R0

components—reproductive
output Λ(x) and survival Ψ(x).
These components are then
connected by dispersal accord-
ing to the dispersal kernel,
k(x, z), whose probability densi-
ty is plotted at z=0.5 for three
different kernels (thick gray
lines with parameters L=10, 0.4,
0.05 where L is the non-
dimensionalized parameter in
equation 10 in van Kirk and
Lewis 1999, which measures the
characteristic dispersal distance
relative to lake size, rather than
the habitat length of our model).
The resulting stable spatial dis-
tribution of population density,
�(x) (dashed lines), is plotted
for each corresponding dispersal
kernel. Source–sink dynamics
are described by the thin lines in
the bottom three rows of panels,
where the division between
source and sink, R0(x)=1, is
shown by the horizontal dotted
lines. Sources are regions where
R0(x)>1 and sinks are regions
where R0(x)<1. The source–sink
dynamics also scale up to affect
global persistence criteria, R0,
which are shown in each panel.
The shore is at x=0 and the
lake’s center is at x=1
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experiences competition with residents. The invader is
considered to be sufficiently rare to escape intra-specific
competition but it may be excluded by interactions with
resident competitors. Details of the competition dynamics,
given by Eq. (18), make the system monotone and
sublinear. Hence, one-way invasibility (one species can
invade the second, but the second cannot invade the first)
will result in a globally stable equilibrium with only one
species present, and hence competitive exclusion.

We begin by simplifying the model by rescaling the state
variables. Then we investigate the effects of competition
and dispersal on source–sink dynamics, species distribu-
tions, and global coexistence. First, we simplify the model
by non-dimensionalizing the state variables such that
yi ¼ b‘i;yYj;aj ¼ b‘j;aAj where ‘i;y and ‘i;a are the pheno-
typic traits (e.g., body size) determining competitive ability
of species j juveniles and adults, respectively. The survi-
vorship and fecundity terms are already dimensionless and
they remain unchanged and so Bj also remains unchanged.
The competition term is simplified to

ϕ x; tð Þ ¼ 1

1þP
j

yj x; tð Þ þ aj x; tð Þ� � ð25Þ

where j is summed over species. To complete the rescaling,
we define nj as the vector containing yj and aj.

The invasibility analysis begins with finding the equi-
librium densities of a resident species when it exists in
isolation, n*r ¼ y*r ; a

*
r , where the subscript r signifies their

resident status in the lake. The invader, i, competes with the

resident, r, for a limiting resource, and this interaction may
be sufficiently strong to prevent establishment. We are
interested in the net reproductive value of the invader, but it
must account for competitive interactions with residents.
Because the resident is at equilibrium and the invader is at
low population density, competition will reduce survivor-
ship of the invader by

ϕi ¼
1

1þ y*r þ a*r
ð26Þ

and the population dynamics of the invader will be
described by Eq. (17) with ϕ=ϕi. From here, we can
quickly see the effect of competition on realized niche
space. Recall that the fundamental niche of a species is
defined by areas where bR0ðxÞ > 1. Because the terms in B
are now weighted by ϕi≤1 the realized niche will be less
than or equal to the fundamental niche (Figs. 3, 4). This can
be seen by calculating the net reproductive value of the
invader in the absence of dispersal

bRi
0 ¼

fi

1� s2;i 1þ y*r þ a*r

� � 1

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lifetime reproductive output

s1;is2;i

1þ y*r þ a*r

� �2
0
B@

1
CA:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
survival

ð27Þ

As resident equilibrium densities of the invader increase
from zero, bRi

0 declines. The convenient separation of the
net reproductive value into spatially independent reproduc-

Fig. 3 Effects of competition
on quagga (solid lines) and
zebra (dashed lines) equilibria
and local net reproductive
values in the absence of dis-
persal. Equilibria and net repro-
ductive values are plotted for
species in isolation (a–b) and
for species in competition (c–d).
The horizontal dotted line at
R0(x)=1 distinguishes locations
that can support a population
( bR0ðxÞ > 1) from those that
cannot ( bR0ðxÞ > 1) when the
effects of dispersal are ignored.
The shore is at x=0 and the
lake’s center is at x=1
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tion and survival components remains. By defining the net
reproductive value through the spatially separated processes
of reproduction

ΛiðzÞ ¼ fiðzÞ
1� s2;iðzÞ 1þ y*r ðzÞ þ a*r ðzÞ

h i�1 ð28Þ

and survival

< iðxÞ ¼ s1;iðxÞs2;iðxÞ
1þ y*r ðxÞ þ a*r ðxÞ
h i2 ð29Þ

we can make the same calculations as in the single species
case, including source and sink regions (Ri

0ðxÞ for Eq. (4)),
and global persistence criteria (R

i
0 for Eq. (8)). The mutual

invasibility analysis determines species coexistence when
R
i
0 > 1 for both species, exclusion occurs when R

i
0 > 1 for

one species but R
i
0 < 1 for the other, and when R

i
0 < 1 for

both species then dominance depends on initial conditions—
the first species to reach equilibrium excludes the other.

Here, we see how species can be extirpated from locally
favorable habitat bR0ðxÞ > 1, even if it remains a source
location Ri

0ðxÞ > 1, if the global net reproductive value is
less than one R

i
0ðxÞ < 1. One can directly map the source–

sink dynamics that underlie all these scenarios of exclusion
and coexistence (Figs. 5, 6).

It is evident from Fig. 2 that zebra mussels and quagga
mussels overlap substantially in fundamental niche space.
This is detailed by overlapping distributions of single
species equilibria and regions of suitable habitat (wherebR0ðxÞ > 1). However, there were also interspecific differ-
ences. The peak single species equilibria of quagga mussels
occurred at a greater depth and distance from shore than it
did for zebra mussels. Further, the equilibrium abundance
of quagga mussels was greater than zebra mussels for the
deeper part of the lake but in the shallows zebra mussels
attained higher densities than quagga mussels. Competition
induced a shift in equilibria and regions of suitable habitat
such that zebra mussels occupied nearshore depths and
quagga mussels occupied deepwater habitats. This
competition-induced shift from fundamental to realized
niche is summarized in Fig. 4 which shows the deepwater
boundary for zebra mussels shifting to shallower habitats
and the shallow water boundary for quagga mussels shifting
to greater depths. This effect corresponds nicely with the
expected zonation of species distributions given the relative
adaptations of quagga mussels to deepwater habitats and
zebra mussels to shallow habitats. Finally, there remained a
narrow band of coexistence where the ranges of the
competing species met.

There were complex interactions among dispersal,
competition, and habitat size that affected source–sink
dynamics which departed strongly from the mapping of
each species’ fundamental niche (Fig. 4). For example, the
entire fundamental niche of a species can become a sink.
This is exemplified by zebra mussels in large lakes (Fig. 5),
where dispersal coupling to large regions of unsuitable
deepwater habitat was sufficiently strong to turn the zebra
mussel fundamental niche into a sink. The effect was also
evident for quagga mussels in small lakes where the
fundamental niche declined sharply in its function as a
source (Fig. 6). These effects can be understood first
through competition inhibiting reproduction and survival,
second by dispersal coupling suitable and unsuitable
habitat, and finally by habitat size regulating the production
value of source habitat and the absorptive value of sink
habitat (Figs. 5, 6). Dispersal also acted to produce source
regions outside a species’ fundamental niche, in particular
nearshore habitats, for the same reasons as described in the
single species case; there, competition was not sufficiently
strong to counteract the effects of dispersal because single
species equilibria of residents were low. When dispersal
was relatively local, there was global competitive coexis-

Fig. 4 Effects of competition on niche space of quagga (a, light gray)
and zebra (b, dark gray) mussels in the absence of dispersal. Shaded
areas in (a)–(b) represent fundamental niche space (defined by areas
where bR0ðxÞ > 1) and the arrows indicate a competition-induced shift
in niche boundaries to the dashed lines. Competition results in
zonation of species distributions (c) with quagga mussels (light gray)
occupying shallow habitats, zebra mussels (dark gray) occupying
deep habitats, and a small area of coexistence (black) at intermediate
depth. The shore is at x=0 and the lake’s center is at x=1
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tence through niche partitioning such that zebra mussels
dominated shallow habitats and quagga mussels dominated
deepwater habitats. As dispersal increased, species zonation
was lost and the species with the greatest amount of
favorable habitat dominated the entire spatial domain
(Figs. 5, 6).

The combined effects of dispersal, competition, and
habitat size on global exclusion and coexistence are
summarized in Fig. 7. When dispersal was local, there
was a large region of global coexistence which was
characterized by zonation—zebra mussels occupied shallow
habitats and quagga mussels occupied deep habitats.
However, as dispersal coupling between shallow and
deepwater habitats increased, coexistence declined, and
the dynamics moved towards lake-wide domination by one

species. The superior species was determined by the
relative amount of favorable habitat: quagga mussels
occupied large lakes with extensive deep/cold habitat and
zebra mussels occupied small lakes where there was a
larger proportion of shallow/warm habitat (Fig. 7). This
effect can be understood by the underlying source–sink
dynamics (Figs. 5, 6), where under extensive dispersal, the
relative amounts of favorable habitat determine the source
or sink functioning of fundamental niche space of each
species. These effects scale up to a metapopulation
distribution where quagga mussels occupy large lakes and
zebra mussels occupy small lakes. This distribution is
consistent with the observed spread and present distribu-
tions of quagga and zebra mussels across temperate eastern
North America.

Fig. 5 Effects of competition
and dispersal on source–sink
dynamics and Ri

0ðxÞ components
in a large lake. As dispersal
increases among columns from
left to right, the responses in the
spatial distributions are plotted
for single species equilibria,
survival Ψ(x), lifetime repro-
ductive output Λ(x), spatial net
reproductive values for the
invader Ri

0ðxÞ, and equilibria of
competing species. Solid lines
are quagga mussels and dashed
lines are zebra mussels. Regions
where Ri

0ðxÞ > 1 function as
sources and Ri

0ðxÞ < 1 function
as sinks for the invader. The
horizontal dotted line in the
bottom row of panels corre-
sponds to R0(x)=1. Shaded
areas correspond to fundamental
niche space (panel rows 5–6)
and zones of dominance at
equilibria (bottom row of
panels) for quagga (light gray)
and zebra (dark gray) mussels.
The shore is at x=0 and the
lake’s center is at x=1
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Discussion

The R0 theory for source–sink dynamics can accommodate
a diversity of spatial population models and provides a
quantitative means for relating niche, source–sink dynamics,
and species distributions. Insights come from an ability to track
the influence of environmental heterogeneity, biotic inter-
actions, and dispersal on source–sink dynamics. Traditional
approaches to source–sink dynamics classified habitat patches
according to the local population growth rate in the absence of
dispersal (Pulliam 1988) whereas recent advances classify
sources and sinks according to the contribution a local patch
makes to the metapopulation (Figueira and Crowder 2006;
Runge et al. 2006). The contribution metric, Cr, provides a
general means for classifying patches as sources and sinks
(Runge et al. 2006), but limitations include a loss of

biological interpretation from the calculations, rapidly accel-
erating complexity of the calculations, and no application for
continuous landscapes or competitive coexistence. For
resource competition models, R* theory provides a means
for predicting the outcome on species persistence (Tilman
1982), but the theory breaks down when dispersal is
introduced (Abrams and Wilson 2004). In spatial competition
models, there are often model-specific criteria for coexistence
and exclusion, which are sometimes difficult to interpret
biologically (Snyder and Chesson 2004). Among spatial
competition models, there has been no general framework for
classifying sources and sinks according to ideas of contribu-
tion metrics (Runge et al. 2006) or for quantifying the
relations among niche, dispersal, competition, and distribu-
tion. The R0 source–sink theory overcomes many of these
limitations. It is broadly applicable to single and competing

Fig. 6 Effects of competition
and dispersal on source–sink
dynamics and Ri

0ðxÞ compo-
nents in a small lake (20% of
the lake in Fig. 5). The shore is
at x=0 and the lake’s center is at
x=0.2. See Fig. 5 caption for
details
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species models. The calculations are biologically intuitive. It
is applicable to patch metapopulations or metacommunities as
well as on continuous landscapes. Finally, it provides a
general framework for source–sink dynamics in the relation
between niche and distribution.

However, the R0 theory for source–sink dynamics
becomes more complex when individuals can both repro-
duce and disperse for many years, for example, giving a
population dynamics model of the form

n x; t þ 1ð Þ ¼
Z

s n z; tð Þ; zð Þn z; tð ÞkA z; xð Þdz

þ
Z

f n z;tð Þ; zð Þ s n z ; tð Þ; zð Þn z ; tð Þk J z ; xð Þd z

ð30Þ
(compare with Eq. (13)). In this situation, the formulae for
R0 become complicated by the need to integrate annual
dispersal and spatially dependent survival and reproduction
over the lifetime of an individual (Appendix 4). This is
relatively easy if the lifecycle has a discrete number of
years, but if there is simply an annual survival probability
followed by dispersal, such as in Eq. (30), the calculations
become complex. We leave this situation for future
mathematical development.

To see the utility and limitations of R0 theory, it is useful
to apply it to previous theory in source–sink dynamics. The
Pulliam (1988) source–sink model, in its linearized form, is

n x; t þ 1ð Þ ¼
X
z

PAðzÞ þ PJðzÞbðzÞð Þn z; tð Þk' z; xð Þ ð31Þ

where x denotes patch identity, PA(z) is adult survival in
patch z, PJ(z) is juvenile survival in patch z, B(z) is the
number of juveniles produced per adult in patch z, and
k′(z, x) is the probability an individual disperses from
patch z to patch x in 1 year. Pulliam (1988) used the local
reproductive rate λ(x)=PA(x)+PJ(x)β(x), Eq. (1), to iden-
tify source patches λ(x)>1 and sink patches λ(x)<1. The
analogous quantity to the local reproductive rate in R0

theory is the local net reproductive value, or niche R0(x),
which has the lifetime reproductive output component
Λ(x)=β(x)[1−PA(x)]−1 and survival term Ψ(x)=PJ(x) giv-
ing bR0ðxÞ=Λ(x)Ψ(x)=β(x)PJ(x)[1−PA(x)]−1. It is easy to
verify that λ(x)=1 implies bR0ðxÞ=1, λ(x)<1 impliesbR0ðxÞ < 1, and λ(x)>1 implies bR0ðxÞ > 1. However, note
that Pulliam’s model (Eq. (31)) similar to Eq. (30) in that
there is annual survival, dispersal, and reproduction of
adults. Hence, it suffers the same difficulty in calculatingbR0ðxÞ and R0 easily, because one must track the spatial
lifecycle trajectory of each individual starting at some
location z when calculating lifetime reproductive output
(Appendix 4).

The R0 theory developed for the Dreissena competition
model assumes an absence of depensation or Allee effects,
which, if included, may change predictions on exclusion
and coexistence based on a mutual invasibility analysis
(Boldin 2006). Extension of our framework to include
Allee effects is an area for future work. We also did not
consider matrix population models where different popula-
tion stages have different dispersal kernels. This is another

Fig. 7 Declining coexistence (shaded regions) of quagga and zebra
mussels with increasing dispersal. Dispersal increases among panel
columns from left to right and is represented by the dispersal kernel
k(x, z) plotted for z=0.5. In the second row of panels, species
persistence (determined by the global net reproductive value R

i
0) is

plotted against habitat size (not position along habitat) for quagga
(solid lines) and zebra (dashed lines) mussels for the corresponding

dispersal kernel. The invader can establish in lakes where R
i
0 > 1 and

coexistence occurs in those lakes where R
i
0 > 1 for both species. The

horizontal dotted line in the bottom row of panels marks R
i
0 ¼ 1. Note

that the region of lake sizes permitting coexistence (shaded regions)
declines with increasing dispersal leading to small lakes occupied by
zebra mussels and large lakes occupied by quagga mussels. The shore
is at x=0 and the lake’s center is at x=1
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mathematical challenge for future developments in source–
sink theory. The model we considered in detail had sessile
adults and a single dispersal event associated with
production of offspring. For this kind of model, R0 theory
provides biologically pleasing calculations. The R0 theory
for source–sink dynamics may not be the simplest
framework for studying spatial population dynamics for
all types of models. However, our results indicate that the
theory is broadly applicable and may provide a general
framework for studying source–sink dynamics under many
model types on fragmented and continuous landscapes.

In the analysis of competition between zebra and quagga
mussels, the R0 source–sink theory showed how environ-
ment, dispersal, and habitat size can influence the distribu-
tions of source and sink habitat and the resulting species
distributions. In this case, an environmental gradient
created variation in habitat quality for the competing
species. Dispersal across habitats of varying size and
quality then affects the local and global outcome of
competition. Environmental gradients have been shown, in
other studies using cellular automata, to affect the distribu-
tions of single species as well as competitive and
cooperative communities (Wilson et al. 1996; Wilson and
Nisbet 1997). However, only recently have environmental
gradients been considered to produce source–sink dynamics
that affect species distributions in nature (Rex et al. 2005).
While (Rex et al. 2005) hypothesized that source–sink
dynamics along depth gradients may regulate biodiversity
in the deep sea benthos, it is immediately apparent that
environmental gradients are ubiquitous, from the deep sea
to the marine intertidal to elevation gradients in mountain
ranges to latitudinal gradients across continental land-
scapes. The R0 source–sink theory provides a framework
for quantitatively characterizing source–sink dynamics and
spatial competition on such continuous landscapes.

Consistent with other studies, our analysis showed that
competition can reduce a species range (Case et al. 2005),
and that dispersal can cause species distributions to differ
from fundamental niche space due to immigration from
source populations (the rescue effect) (Brown and Kodric-
Brown 1977; Pulliam 1988) or emigration to sink popula-
tions (Amarasekare and Nisbet 2001). Underlying these
effects were changes in source and sink regions that
deviated from fundamental niche space due to dispersal
between and reflecting boundaries near favorable or
unfavorable habitat. Competition enhanced these effects
on source and sink regions, to the extent that an entire
fundamental niche can become a sink through strong
dispersal coupling to unsuitable habitat. At a global
(whole-lake) scale, coexistence was enhanced by local
dispersal that maintained source and sink regions, and
resulted in niche partitioning through species zonation.

Similar to other source–sink models (Amarasekare and
Nisbet 2001, Snyder and Chesson 2004), large-scale
dispersal had a homogenizing effect. This either decreased
or increased source regions depending on the relative
amounts of favorable and unfavorable habitat and resulted
in a single species—the one with the greatest amount of
favorable habitat—dominating the entire domain.

The source–sink dynamics underlying zebra and quagga
mussel competition resolve a long-standing paradox in
invasion biology. The invasion of North America by
Dreissena began with an initial rapid spread of zebra
mussels across most of the temperate East followed by the
appearance of quagga mussels and their subsequent
displacement of zebra mussels in a few large lakes but not
in surrounding smaller lakes (Mills et al. 1996, 1999;
Wilson et al. 2006; HJM, personal communication). The
estimated fundamental niches of quagga and zebra mussels
overlapped substantially indicating that competitive exclu-
sion should apply, as others like Stoeckmann (2003) have
suggested. Quagga mussels may have an energetic advan-
tage (Stoeckmann 2003) but this fails to explain their
absence from surrounding smaller lakes. Dispersal limitation
is not an adequate explanation either because Dreissena are
readily transported by the same vectors (boat traffic) or this
has probably occurred for many years (Johnson and Carlton
1996; Wilson et al. 1999). Closer inspection of quagga and
zebra mussel fundamental niches reveals subtle inter-
specific differences—quagga mussels are better adapted to
deeper habitats and zebra mussels are better adapted to
shallower habitat. This subtle difference in adaptation,
measured directly as fitness through R0, leads to source–
sink dynamics between deepwater and shallow habitats that
resolves the paradox of Dreissena competition. Quagga
mussels are predicted to exclude zebra mussels from large
deep lakes and zebra mussels are predicted to exclude
quagga mussels from small shallow lakes.

Differences in depth adaptation between quagga and
zebra mussels are explained by subtle interspecific differ-
ences in survival and growth responses to temperature
(Thorp et al. 1998) and scaling relations between body size
and fecundity (Walz 1978; Stoeckel et al. 2004; Strayer and
Malcom 2006). Competition alone induced niche partition-
ing by narrowing each species’ realized niche into a band of
quagga mussels in deep habitats, a narrow band of
coexistence at intermediate depth, and a band of zebra
mussels in shallow habitats. Competitive interactions were
assumed to be mediated by body size—a passive form of
interference competition where smaller mussels can only
access food resources in the water column that have been
partially pre-filtered by larger mussels. When we intro-
duced dispersal at local scales, these patterns of species
zonation remained over a broad range of lake sizes.
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However, Dreissena have vast dispersal potential owing to
long-lived planktonic larvae (Mackie and Schloesser 1996;
Mills et al. 1996). As dispersal increased the range of lake
sizes capable of supporting both species declined; patterns
of species zonation were lost and a single species typically
dominated the entire lake. The partitioning of lake-wide
dominance to quagga or zebra mussels depends on an
assumption that larger lakes have a larger proportion of
colder benthic habitat and that smaller lakes have a larger
proportion of warmer benthic habitat during summer. Since
lakes typically have a thermal depth gradient during
summer, either continuous or discontinuous, this causes
shallow benthic habitats to be warmer than deepwater
benthic habitats. On average then, larger lakes would have a
larger proportion of deepwater and colder benthic habitat
that favors Quagga mussels. These effects scale to predict a
metacommunity distribution where quagga mussels domi-
nate large lakes and zebra mussels dominate small lakes,
which is consistent with their patterns of spread and present
distributions.

The classical result for source–sink dynamics and spatial
competition is that source–sink dynamics among habitat
patches support the coexistence of competing species
(Levin 1974; Amarasekare and Nisbet 2001). The land-
scape coexistence of zebra and quagga mussels has a
different mechanism—source–sink dynamics within lakes
undermine within-lake coexistence. Subtle differences in
fitness between zebra and quagga mussels in response to
temperature creates a source–sink dynamics along the
continuous habitat of a lake bottom. Competitive inter-
actions with quagga mussels yield source habitat for zebra
mussels in shallow habitats and sink habitat in deep
habitats. In contrast, competition with zebra mussels leads
to sink regions in shallow habitat and source regions in
deep habitats for quagga mussels. Lake size then mediates
the outcome of source–sink dynamics between deepwater
and shallow habitats. Because dispersal is large, coupling
between the two habitat types is strong, leading to
dominance of the species with the greatest amount of habitat
and exclusion of the species with the least. Dominance of
one species and exclusion of the other depends on lake size,
where strong connectivity to competition-determined sink
habitat extinguishes species from what is otherwise suitable
habitat, a result theorized previously by Amarasekare and
Nisbet (2001) and Schreiber and Kelton (2005). The
among-lake pattern of coexistence arises then because the
landscape includes small lakes where zebra mussels prevail
and large lakes where quagga mussels prevail, not because
of source–sink dynamics among lakes.

While the relative adaptations to deep and shallow
habitats for quagga and zebra mussels are well supported,
there are some factors we did not consider. For example,
temperature control of gametogenesis and spawning allows

reproduction by quagga mussels at greater depths than
zebra mussels (Roe and MacIsaac 1997; Claxton and
Mackie 1998). There are also interspecific differences in
adaptations to wave swept environments that may favor
zebra mussels in shallow habitats (Mills et al. 1993). These
factors would act to increase the interspecific partitioning of
lakes into source and sink regions and further substantiate
our results. Other factors may act in neutral or unknown
ways. For example, mussels can deplete food supply at
whole-lake scales (Bridgeman et al. 1995; Fahnenstiel et al.
1995; Idrisi et al. 2001), which implies that competition
may occur among individuals other than immediate
neighbors. Further, if food limitation induces interspecific
differences in survival, growth, or fecundity, then this could
affect the model results. These types of differences, if they
exist, could be directly incorporated into the model if they
are sufficiently documented over a range of temperatures.
Temperature was incorporated in the model as a mean
summer spatial profile and we did not consider within-
season temporal variation. This assumes that competitive
interactions, growth, and reproduction occur primarily
during summer months. Further, we used data from
mesocosm experiments to parameterize temperature depen-
dency of survival and growth (Thorp et al. 1998) and these
of course depart from field conditions. Nevertheless, while
the model made many simplifying assumptions, we believe
it captured the essential features of Dreissena biology—in
particular interspecific differences in habitat adaptation—
and allowed us to examine how these differences interact
with dispersal, competition, and habitat size to produce
source–sink dynamics and explain species distributions.

Source–sink dynamics may be ubiquitous in nature.
They may occur along depth gradients and regulate
biodiversity in the deep sea benthos (Rex et al. 2005).
They may occur along depth gradients in lakes and
structure benthic communities, as we have suggested here.
Source–sink dynamics may occur on other environmental
gradients down intertidal shorelines, up mountain ranges, or
across continental scales. For fragmented habitats, source–
sink dynamics among habitat patches may facilitate
coexistence of competing species (Levin 1974; Amarase-
kare and Nisbet 2001). The general source–sink theory we
have presented here can accommodate these various spatial
structures yet yield general and coherent criteria that are
biologically intuitive for understanding relationships among
niche, dispersal, biotic interactions, source–sink dynamics,
and species distributions. It is important to note that our
methods are not limited to theory but can be directly ported
to Geographic Information Systems to accommodate
environmental information from real habitats. The applica-
tion of source–sink theory to competition between quagga
and zebra mussels resolves their paradoxical distributions
and shows that source–sink dynamics rather than dispersal

40 Theor Ecol (2010) 3:25–43



limitation explain the absence of species from suitable
habitat. There are numerous other possible applications of
our theory, perhaps most notably spatial coexistence,
habitat conservation, marine protected areas, and ecological
responses to climate change.
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Appendix 1

Here we show how Eq. 8, which applies to the general case,
can be used to find intuitively pleasing solutions to two
special cases: when the initial individual is introduced at
one location and when dispersal is uniform across the
domain.

For the point release, we must introduce the Dirac delta
function, δ(z−x), which is a distribution (a) equals zero for
all x≠z, (b) is unbounded when x=z, and (c) integrates to
unity. For example, if an individual disperses according to
the Dirac delta function, it will remain where it is
probability one—it does not disperse. Similarly, if the
initial individual is introduced at some location ξ, then it
has an initial distribution �0(x)=δ(x−ξ). So if we consider
an adult individual that is introduced at location ξ, Eq. (6)
simplifies to

Γd x� xð Þ ¼ < ðxÞ
ZL
0

ΛðzÞd z� xð Þk x; zð Þdz

¼ < ðxÞΛ xð Þk x; xð Þ ð32Þ
We define R0(x) to be the total number of offspring

produced at any spatial location by the single individual by
integrating Eq. (32) over all spatial locations x to yield

R0 xð Þ ¼
ZL
0

< ðxÞΛ xð Þk x; xð Þdx

¼ Λ xð Þ
ZL
0

< ðxÞk x; xð Þdx

ð33Þ

as given in Eq. (4). In the case where there is no dispersal
k(ξ, x)=δ(x−ξ) and Eq. (33) simplifies to Eq. (3).

When dispersal operates on the largest scale possible, the
dispersal kernel becomes a uniform distribution. The lake is
essentially homogenized by dispersal so that larvae can
settle anywhere with equal probability regardless of where
they were released. In this case, the next generation
operator, Eq. (4), becomes

Γf zð Þ ¼ < ðzÞ 1
L

Z L

0
ΛðxÞf0ðxÞdx: ð34Þ

If we choose �(z)=ψ(z), then we see that ψ(z) is the
eigenfunction and that the dominant eigenvalue is

R0 ¼ 1
L

R L
0 ΛðxÞ< ðxÞdx

¼ 1
L

R L
0 R0ðxÞdx

ð35Þ

which is pleasingly intuitive. When dispersal operates on a
large enough scale, the lake-wide net reproductive rate, R0,
becomes the spatial average of the local R0(x).

Appendix 2

In this section, we describe the Dreissena model parame-
terization. Equation (9) is our model with two species—
quagga and zebra mussels. We compiled statistical models
of mussel growth, survival, and reproduction from the
literature and linked these to position along benthic habitat
from the shore at x=0 to the center of a lake at x=L via a
mean summer temperature profile, T=30e−0.05x. Results are
qualitatively the same for most temperature functions we
considered, including those with thermal stratification. We
take ℓ, the phenotypic trait determining competitive ability,
to be shell length, assuming that mussels must compete with
immediate neighbors for access to the water column. Shell
growth is related to temperature through a logistic regression:
‘ T ; tð Þ ¼ exp aþ b1T þ b2T 2 þ b3‘ t � 1ð Þ½ � � 1, where ℓ is
shell length, T is temperature in degrees centigrade, and t is
time—here taken to be years but in the source study it is a 3-
month mesocosm experiment (Table 1) (Thorp et al. 1998).
Together with our model, this assumes that body growth
occurs primarily during a 3-month summer season. Shell size
is related to egg production by 0.4⋅( ℓ)4.4 (Walz 1978;
Stoeckel et al. 2004), which we assume is the same for both
species. We assume that 0.1% of larvae survive to settle on
the lake bottom, similar to other models (Strayer and
Malcom 2006) and consistent with other observations
(Sprung 1989). Fecundity is then f ðxÞ ¼ 0:001 � 0:4 � ‘ðxÞ½ �4:4,
which assumes an excess of sperm. Basal survival rates are
also related to temperature by sj,1(T)=sj,2(T)=[exp(a+b1T+
b2T

2)][exp(a+b1T+b2T
2)]−1 based on the same mesocosm

experiments (Table 1) (Thorp et al. 1998) plus our
simplifying assumption that sj,1(T)=sj,2(T).
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Appendix 3

Here, we calculate the expected lifespan of an adult mussel
invading a resident community. Let the annual survivorship
of an adult be p. Let τ be a random variable for the duration
of an adult lifespan. The probability of dying after 1 year is
P[τ=1]=(1−p). The probability of dying after 2 years is
P[τ=2]=p(1−p) and after 3 years is P[τ=3]=p2(1−p). The
probability of dying after n years is P[τ=n]=pn−1(1−p). The
mean duration of an adult is then given by the expectation

E t½ � ¼Pt tP t ¼ t½ �
¼ 1� pð Þ 1þ 2pþ 3p2 þ 4p3 þ :::ð Þ
¼ 1� pð Þ d

dp 1� pð Þ�1
h i

¼ 1� pð Þ�1

ð36Þ

Appendix 4

Here we give the next generation operators for Eqs. (30)
and (31). Equation (30) has next generation operator

Γn x; tð Þ ¼ R f 0; zð Þs 0; zð Þ n0 z; tð Þ þ n1 z; tð Þ þ Kð ÞkJ z; xð Þdz
n0 x; tð Þ ¼ n x; tð Þ
ni x; tð Þ ¼ R s 0; zð Þni�1 z; tð ÞkA z; xð Þdz; i ¼ 1; 2;K

ð37Þ
and Eq. (31) has next generation operator

Γn x; tð Þ ¼P
z
bðzÞPJðzÞ n0 z; tð Þ þ n1 z; tð Þ þ Kð Þk' z; xð Þ

n0 x; tð Þ ¼ n x; tð Þ
ni x; tð Þ ¼P

z
PAðzÞni�1 z; tð Þk 0 z; xð Þ; i ¼ 1; 2;K

ð38Þ
The global net reproductive value R0 is the spectral

radius of Γ. The fundamental niche and source–sink R0s
can be calculated using the methods of Appendix 1.
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